A Single Amplifier-Based 12-bit 100 MS/s 1 V 19 mW 0.13 µm CMOS ADC with Various Power and Area Minimized Circuit Techniques
نویسندگان
چکیده
This work describes a 12-bit 100 MS/s 0.13 μm CMOS three-stage pipeline ADC with various circuit design techniques to reduce power and die area. Digitally controlled timing delay and gatebootstrapping circuits improve the linearity and sampling time mismatch of the SHA-free input network composed of an MDAC and a FLASH ADC. A single two-stage switched op-amp is shared between adjacent MDACs without MOS series switches and memory effects by employing two separate NMOS input pairs based on slightly overlapped switching clocks. The interpolation, open-loop offset sampling, and two-step reference selection schemes for a back-end 6-bit flash ADC reduce both power consumption and chip area drastically compared to the conventional 6-bit flash ADCs. The prototype ADC in a 0.13 μm CMOS process demonstrates measured differential and integral non-linearities within 0.44LSB and 1.54LSB, respectively. The ADC shows a maximum SNDR and SFDR of 60.5 dB and 71.2 dB at 100 MS/s, respectively. The ADC with an active die area of 0.92 mm2 consumes 19 mW at 100 MS/s from a 1.0 V supply. The measured FOM is 0.22 pJ/conversion-step. key words: ADC, pipeline, low power, SHA-free, circuit sharing, two-step reference selection
منابع مشابه
A 100-MS/s 8-b CMOS Subranging ADC with Sustained Parametric Performance
A 100-MS/s 8-b CMOS analog-to-digital converter (ADC) designed for very low supply voltage and power dissipation is presented. This single-ended-input ADC is based on the unified two-step subranging architecture, which processes the coarse and fine decisions in identical signal paths to maximize their matching. However, to minimize power and area, the coarse-to-fine overlap correction has been ...
متن کاملPipeline ADC using Switched Capacitor Sharing Technique with 2.5 V, 10-bit
This paper presents 10-bit, 1.5 MS/s, 2.5V, Low Power Pipeline analog to digital converter using capacitor coupling techniques. A capacitance coupling folded-cascade amplifier effectively saves the power consumption of gain stages of ADC in a 0.25 μm CMOS technology. The ADC also achieves Low power Consumption by the sharing an op-amp between two successive pipeline stage further reduction of p...
متن کاملImproving Linearity of CMOS Variable-gain Amplifier Using Third-order Intermodulation Cancellation Mechanism and Intermodulation Distortion Sinking Techniques
This paper presents an improved linearity variable-gain amplifier (VGA) in 0.18-µm CMOS technology. The linearity improvement is resulted from employing a new combinational technique, which utilizes third-order-intermodulation (IM3) cancellation mechanism using second-order-intermodulation (IM2) injection, and intermodulation distortion (IMD) sinking techniques. The proposed VGA gain cell co...
متن کاملA Low-Power Mixed-Architecture ADC with Time-Interleaved Correlated Double Sampling Technique and Power-Efficient Back-End Stages
In this paper, two techniques for implementing a lowpower pipelined analog-to-digital converter (ADC) are proposed. First, the time-interleaved correlated double sampling (CDS) technique is proposed to compensate the finite gain error of operational amplifiers in switchedcapacitor circuits without a half-rate front-end sample-and-hold amplifier (SHA). Therefore, low-gain amplifiers and the SHA-...
متن کاملA 10 b 200 MS/s 1.8 mm2 83 mW 0.13µm CMOS ADC Based on Highly Linear Integrated Capacitors
This work proposes a 10 b 200 MS/s 1.8 mm2 83 mW 0.13 μm CMOS ADC based on highly linear integrated capacitors for highquality video system applications such as next-generation DTV and radar vision and wireless communication system applications such as WLAN, WiMax, SDR, LMDS, and MMDS simultaneously requiring low voltage, low power, and small area at high speed. The proposed 3-stage pipeline AD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 94-C شماره
صفحات -
تاریخ انتشار 2011